
Birzeit University - Faculty of Engineering & Technology
Electrical & Computer Engineering Department - ENCS313
Linux laboratory

Experiment #6
Shell scripting

Part III

0.1 Introduction

The experiment intends to present to students the shell scripting. Students will be shown
how to take advantage of the Linux commands they have seen so far in order to build shell
scripts. Students will be shown as well how to create and use loops (for, while, until), will
be shown the continue and break constructs as well as the usage of options in shell scripts
(getopts command). The printf command will be presented and students will see the power
of formatting the output. Afterwards, students will be shown on how to request user input
through the read command1.

The above-mentioned topics are too large to be covered in a single experiment. This is why
three experiments will be dedicated to tackle shell scripting.

0.2 Objectives

The objectives of the experiment is to learn the following:

• Provide more insight into the syntax of shell scripting.

• Provide examples on how to use loops in shell scripts.

• Show students how to request user input through the read command.

0.3 The for command

The for command is used to execute a set of commands a specified number of times. Its basic
format is as shown:

for var in word1 word2 ... wordn

do

command

command

...

done

The commands enclosed between the do and the done form what’s known as the body of the
loop. These commands are executed for as many words as you have listed after the in. When
the loop is executed, the first word, word1, is assigned to the variable var, and the body of the
loop is then executed. Next, the second word in the list, word2, is assigned to var, and the body
of the loop is executed. This process continues with successive words in the list being assigned
to var and the commands in the loop body being executed until the last word in the list, wordn,
is assigned to var and the body of the loop executed.

Example 1

Create a file called for 1 and type the following:

1Stephen G. Kochan, Patrick Wood - Unix Shell Programming, 3rd Edition

1

#!/bin/sh

for i in 1 2 3

do

echo $i

done

Make the script executable and run it as follows:

./for 1

Note the output that you get.

Example 2

Create a file called for 2 and type the following:

#!/bin/sh

echo Number of arguments passed is $#

for arg in $*

do

echo $arg

done

Make the script executable and run it as follows:

./for 2 my name is coco

and note the output that you get.

Example 3

Create a file called for 3 and type the following:

#!/bin/sh

for i in ‘\ls‘

do

echo $i | tr ’[a-z]’ ’[A-Z]’

done

Make the script executable and run it as follows:

./for 3

Note the output that you get.

0.4 The for Without the List

If the for command is not followed by the in construct as shown above, the shell automatically
sequences through all the arguments typed on the command line.

Example 4

Create a file called for 4 and type the following:

#!/bin/sh

echo Number of arguments passed is $#

for arg

do

2

echo $arg

done

Make the script executable and run it as follows:

./for 4 a b c

Note the output that you get.

0.5 The while Command

This is the second form of looping in shell scripts. The format is as follows:

while commandt

do

command

command

...

done

In the above format, commandt is executed and its exit status tested. If it’s zero, the commands
enclosed between the do and done are executed. Then commandt is executed again and its exit
status tested. If it’s zero, the commands enclosed between the do and done are once again
executed. This process continues until commandt returns a nonzero exit status. At that point,
execution of the loop is terminated. Execution then proceeds with the command that follows
the done.

Example 1

Create a file called while 1 and type the following:

#!/bin/sh

i=1

while ["$i" -le 5]

do

echo $i

i=$((i + 1))

done

Make the script executable and run it as follows:

./while 1

and note the output that you get.

Example 2

Create a file called while 2 and type the following:

#!/bin/sh

#

Print command line arguments one per line

#

while ["$#" -ne 0]

do

echo "$1"

shift

done

3

Make the script executable and run it as follows:

./while 2 a b c

and note the output that you get.

0.6 The until Command

The while command continues execution as long as the command listed after the while returns
a zero exit status. The until command is similar to the while, only it continues execution as
long as the command that follows the until returns a nonzero exit status. As soon as a zero
exit status is returned, the loop is terminated. Here is the general format of the until:

until commandt

do

command

command

...

done

Let’s see how to use it by exploring some examples.

Example 1

Create a file called until 1 and type the following:

#!/bin/sh

#

Wait until a specified user logs on

#

if ["$#" -ne 1]

then

echo "Usage: mon user"

exit 1

fi

user="$1"

#

Check every minute for user logging on

#

until who | grep "^$user " > /dev/null

do

sleep 60

done

#

When we reach this point, the user has logged on

#

echo "$user has logged on"

The script until 1 checks on a user provided as an argument if he/she is logged on to the system
or not. If still not logged on, the script sleeps for 60 seconds before checking another time. That

4

behavior gets repeated until the user logs on.

The above script assumes you are behind your screen and are checking if a message gets displayed
every now and then. In the below example, we’re presenting an improved version of that script.
The script is going to notify you optionally by email when a user gets logged on to the system.

Example 2

Create a file called until 2 and type the following:

#!/bin/sh

#

Wait until a specified user logs on

#

if ["$1" = -m]

then

mailopt=TRUE

shift

else

mailopt=FALSE

fi

if ["$#" -eq 0 -o "$#" -gt 1]

then

echo "Usage: until_2 [-m] user"

echo "-m means to be informed by mail"

exit 1

fi

user="$1"

#

Check every minute for user logging on

#

until who | grep "^$user " > /dev/null

do

sleep 60

done

#

When we reach this point, the user has logged on

#

if ["$mailopt" = FALSE]

then

echo "$user has logged on"

else

echo "$user has logged on" | mail hanna

fi

In the above example, we assume that hanna is the current user of the script. Note that the
option -m has been added to allow the current user of the script (hanna) to be able to state if
he wants to be notified by email or not.

5

0.7 Breaking Out of a Loop - the break command

Sometimes you may want to make an immediate exit from a loop. To just exit from the loop
(and not from the program), you can use the break command, whose format is simply:

break

When the break is executed, control is sent immediately out of the loop, where execution then
continues as normal with the command that follows the done.

The break command is often used to exit from these sorts of infinite loops, usually when some
error condition or the end of processing is detected.

Example 1

Create a file called break 1 and type the following:

#!/bin/sh

#

The below code illustrates the use of the break command

#

while true

do

cmd="$1"

if ["$cmd" = quit]

then

break

else

echo "$cmd"

sleep 1

fi

done

Make the script executable and run it as follows:

./break 1 12

Do another run as follows:

./break 1 quit

Note the output that you get in each case.

Note that the above example has no useful application but to illustrate the usage of the break

command.

Note

If the break command is used in the form:

break n

the n innermost loops are immediately exited.

Example 2

Create a file called break 2 and type the following:

#!/bin/sh

#

6

The below code is incomplete. It just illustrates on how to use

the break command

#

for file

do

...

while ["$count" -lt 10]

do

...

if [-n "$error"]

then

break 2

fi

...

done

...

done

Please note that the above code is incomplete. It is provided to illustrate the usage of break n

command.

In the above example, both the while and the for loops will be exited if variable $error is
nonnull.

0.8 Skipping the Remaining Commands in a Loop - the continue

Command

The continue command is similar to break, only it doesn’t cause the loop to be exited, but
the remaining commands in the loop to be skipped. Execution of the loop then continues as
normal. Like the break, an optional number can follow the continue, so

continue n

causes the commands in the innermost n loops to be skipped; but execution of the loops then
continues as normal.

Example

Create a file called continue 1 and type the following:

#!/bin/sh

#

The below illustrates the use of the continue command

#

for file

do

if [! -e "$file"]

then

echo "$file not found!"

continue

fi

#

7

Process the file

#

echo $file

done

Make the script executable and run it twice, one by providing an existing file name as argument
and the second time by providing a non-existant file name as argument.

Note the output that you get in each case.

0.9 Typing a Loop on One Line

If you would like to write loops on one line rather on multiple lines (to gain in visibility and
have your script less lines of code), you can use the following shorthand notation to type the
entire loop on a single line: Put a semicolon after the last item in the list and one after each
command in the loop. Don’t put a semicolon after the do.

Example

The below code

#!/bin/sh

for i in 1 2 3 4

do

echo $i

done

can be written as:

#!/bin/sh

for i in 1 2 3 4; do echo $i; done

0.10 The getopts Command

It happens a lot that shell scripts are being passed arguments before they start running. The
more arguments you provide, the more useful will shell scripts become (and more sophisticated
as well).

The problem with arguments is that you need to pass them in a certain order so that a shell
script knows how to deal with them. If the arguments are entered in different orders, the script
might not behave the way you want. This is where the command getopts gets handy.

The general format of the command is:

getopts options variable

The following comments should be made regarding command getopts:

• The getopts command is designed to be executed inside a loop. Each time through the
loop, getopts examines the next command line argument and determines whether it is a
valid option. This determination is made by checking to see whether the argument begins
with a minus sign and is followed by any single letter contained inside options. If it does,
getopts stores the matching option letter inside the specified variable and returns a zero
exit status.

• If the letter that follows the minus sign is not listed in options, getopts stores a question
mark inside variable before returning with a zero exit status. It also writes an error
message to standard error.

8

• All options that do not require arguments can be stacked. For example, if a shell script
called test requires the following 3 options: -a, -i, -r, it can be run as follows:

./test -a -i -r

or can be run as follows:

./test -air

• To indicate to getopts that an option takes a following argument, you write a colon (:)
character after the option letter on the getopts command line. For example, if the shell
script test takes 2 argument, -m and -t and option -t requires an argument, getopts
should be used as follows:

getopts mt: option

If getopts doesn’t find an argument after an option that requires one, it stores a question
mark inside the specified variable and writes an error message to standard error. Otherwise,
it stores the actual argument inside a special variable called OPTARG.

• A special variable called OPTIND is used by getopts. This variable is initially set to one
and is updated each time getopts returns to reflect the number of the next command-line
argument to be processed.

Let’s look at some examples2:

Example 1

Create a file called getopts 1 and type the following:

#!/bin/sh

while getopts "abc:" flag

do

echo "$flag" $OPTIND $OPTARG

done

Make the script executable and run it as follows:

./getopts 1 -abc "foo"

You should get the following output:

a 1

b 1

c 3 foo

Example 2

Create a file called getopt 2 and type the following:

#!/bin/sh

while getopts "abc:def:ghi" flag

do

echo "$flag" $OPTIND $OPTARG

done

echo "Resetting"

2http://aplawrence.com/Unix/getopts.html

9

OPTIND=1

while getopts "abc:def:ghi" flag

do

echo "$flag" $OPTIND $OPTARG

done

Make the script executable and run it as follows:

./getopts 2 -a -bc foo -f "foo bar" -h -gde

You should get the following output:

a 2

b 2

c 4 foo

f 6 foo bar

h 7

g 7

d 7

e 8

Resetting

a 2

b 2

c 4 foo

f 6 foo bar

h 7

g 7

d 7

e 8

If command getopts encounters an unwanted argument, the variable $flag will be set to ? and
an error message will be displayed.

For example, run the shell script getopts 2 as follows:

./getopts 2 -a -c foo -l

You will get the following output:

a 2

c 4 foo

./getopts_2: illegal option -- l

? 5

Resetting

a 2

c 4 foo

./getopts_2: illegal option -- l

? 5

Equally, if you do not provide an argument to an option that requires one, the variable $flag

will be set to ? and an error message will be displayed.

For example, run the shell script getopts 2 as follows:

./getopts 2 -a -c

You will get the following output:

a 2

./getopts_2: option requires an argument -- c

10

? 3

Resetting

a 2

./getopts_2: option requires an argument -- c

? 3

0.11 The read Command

The read command is used to read standard input. That is helpful when a shell script needs to
be interactive with users. The general format of the read command is:

read variables

When this command is executed, the shell reads a line from standard input and assigns the first
word read to the first variable listed in variables, the second word read to the second variable,
and so on. If there are more words on the line than there are variables listed, the excess words
get assigned to the last variable.

If no user input is provided, a shell script halts until an input has been provided.

Example 1

Create a text file called read 1 and type the following:

#!/bin/sh

#

Copy a file

#

if ["$#" -ne 2]

then

echo "Usage: mycp from to"

exit 1

fi

from="$1"

to="$2"

#

See if the destination file already exists

#

if [-e "$to"]

then

echo "$to already exists; overwrite (yes/no)?"

read answer

if ["$answer" != yes]

then

echo "Copy not performed"

exit 0

fi

fi

#

11

Either destination doesn’t exist or "yes" was typed

#

cp $from $to # proceed with the copy

The above example is a shell script that copies a source file into a destination file. However, it
does some checkings before doing so, such as if the source and destination files exist or no, the
number of arguments is correct and so on.

Note that the shell script will halt execution until an answer is provided by the user in case the
destination file exists.

In the below example, we’re presenting in advanced version of that script that shows how multiple
files can be copied to a directory. The purpose is to show you that shell scripts can get quite
complex if you intend to make them useful.

Example 2

Create a text file called read 2 and type the following:

#!/bin/sh

#

Copy a file -- final version

#

numargs=$# # save this for later use

filelist=

copylist=

#

Process the arguments, storing all but the last in filelist

#

while ["$#" -gt 1]

do

filelist="$filelist $1"

shift

done

to="$1"

#

If less than two args, or if more than two args and last arg

is not a directory, then issue an error message

#

if ["$numargs" -lt 2 -o "$numargs" -gt 2 -a ! -d "$to"]

then

echo "Usage: mycp file1 file2"

echo " read_2 file(s) dir"

exit 1

fi

#

Sequence through each file in filelist

12

#

for from in $filelist

do

#

See if destination file is a directory

#

if [-d "$to"]

then

tofile="$to/$(basename $from)"

else

tofile="$to"

fi

#

Add file to copylist if file doesn’t already exist

or if user says it’s okay to overwrite

#

if [-e "$tofile"]

then

echo "$tofile already exists; overwrite (yes/no)? \c"

read answer

if ["$answer" = yes]

then

copylist="$copylist $from"

fi

else

copylist="$copylist $from"

fi

done

#

Now do the copy -- first make sure there’s something to copy

#

if [-n "$copylist"]

then

cp $copylist $to # proceed with the copy

fi

Make the script executable and run it as follows:

./read 2

Note the usage of the command basename in the above script. Its purpose is to strip directory
and suffix from filenames. As an example, run the following command:

basename /home/user

and check on the output that you get. Try as well to run the command dirname whose purpose
is to strip the last component from a file name:

dirname /home/user

13

and check on the output that you get. You will notice that the commands basename and dirname

complement each other.

0.12 The printf command

Although echo is adequate for displaying simple messages, sometimes you’ll want to print for-
matted output: for example, lining up columns of data. Unix systems provide the printf

command. You should be familiar with it since you’ve seen it in the C programming language.

The general format of the printf command is:

printf "format" arg1 arg2 ...

where format is a string that describes how the remaining arguments are to be displayed.

Example

Type the following command on your shell:

printf "This is a number: %d\n" 10

The shell should print the following:

This is a number: 10

The command printf takes different conversion characters other than the %d. The below table
summarizes these specification characters.

Character Use for Printing

d Integers

u Unsigned integers

o Octal integers

x Hexadecimal integers, using a-f

X Hexadecimal integers, using A-F

c Single characters

s Literal strings

b Strings containing backslash escape characters

% Percent signs

Examples and their output

printf "The octal value for %d is %o\n" 20 20

The octal value for 20 is 24

printf "The hexadecimal value for %d is %x\n" 30 30

The hexadecimal value for 30 is 1e

printf "The unsigned value for %d is %u\n" -1000 -1000

The unsigned value for -1000 is 4294966296

14

printf "This string contains a backslash escape: %s\n" "test\nstring"

This string contains a backslash escape: test\nstring

printf "This string contains an interpreted escape: %b\n" "test\nstring"

This string contains an interpreted escape: test string

printf "This string contains an interpreted escape: %b\n" "test\nstring"

This string contains an interpreted escape: test string

printf "A string: %s and a character: %c\n" hello A

A string: hello and a character: A

printf "Just the first character: %c\n" abc

a

printf "%+d\n%+d\n%+d\n" 10 -10 20

+10

-10

+20

printf "% d\n% d\n% d\n" 10 -10 20

10

-10

20

printf "%#o %#x\n" 100 200

0144 0xc8

printf "%20s%20s\n" string1 string2

string1 string2

printf "%-20s%-20s\n" string1 string2

string1 string2

printf "%5d%5d%5d\n" 1 10 100

1 10 100

printf "%5d%5d%5d\n" -1 -10 -100

-1 -10 -100

printf "%-5d%-5d%-5d\n" 1 10 100

1 10 100

printf "%.5d %.4X\n" 10 27

00010 001B

printf "%.5s\n" abcdefg

abcde

printf "%.5s\n" abcdefg

abcde

printf "%12s%10.2s\n" "test one" "test two"

test one te

15

